## Proximity Navigation Near and Mapping of Asteroids

NASA

Completed Technology Project (2013 - 2017)

## **Project Introduction**

Sensor fusion algorithms are proposed that enable proximity navigation and mapping of an unknown space object, such as an asteroid. The sensors envisioned are a range sensor (Flash LIDAR), and a synchronized and coregistered HD video camera, and an IMU. The transition from intermediate to close proximity is considered wherein the observability early-on allows only the 3DOF range vector to be determined, and in close proximity where the full 6DOF relative pose is observable and the object geometry can be recursively learned/estimated. Our algorithms are novel because of (i) unique utilization of sensor field overlap-induced information redundancy to eliminate poor features and retain the most consistent features on the object based on statistical hypothesis-testing and (ii) utilization of a recently discovered way to rigorously linearize the least square fusion of two overlapping point clouds, without approximation. End-to-end experiments in our laboratory http://lasr.tamu.edu/ are proposed to accelerate maturation and evaluation of the technology.

## **Anticipated Benefits**

Our algorithms are novel because of (i) unique utilization of sensor field overlap-induced information redundancy to eliminate poor features and retain the most consistent features on the object based on statistical hypothesistesting and (ii) utilization of a recently discovered way to rigorously linearize the least square fusion of two overlapping point clouds, without approximation.

#### **Primary U.S. Work Locations and Key Partners**





Proximity Navigation Near and Mapping of Asteroids

#### **Table of Contents**

| Project Introduction          | 1 |
|-------------------------------|---|
| Anticipated Benefits          | 1 |
| Primary U.S. Work Locations   |   |
| and Key Partners              | 1 |
| Organizational Responsibility | 1 |
| Project Website:              | 2 |
| Project Management            | 2 |
| Technology Maturity (TRL)     | 2 |
| Technology Areas              | 2 |

# Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

#### **Responsible Program:**

Space Technology Research Grants



### **Space Technology Research Grants**

# Proximity Navigation Near and Mapping of Asteroids



Completed Technology Project (2013 - 2017)

| Organizations<br>Performing Work                         | Role                       | Туре                                         | Location                     |
|----------------------------------------------------------|----------------------------|----------------------------------------------|------------------------------|
| Texas A & M University-<br>College Station(Texas<br>A&M) | Supporting<br>Organization | Academia Hispanic Serving Institutions (HSI) | College<br>Station,<br>Texas |

| Primary U.S. Work Location |
|----------------------------|
|----------------------------|

Texas

## **Project Website:**

https://www.nasa.gov/directorates/spacetech/home/index.html

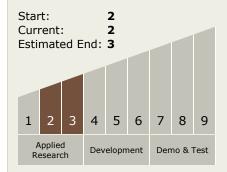
## **Project Management**

#### **Program Director:**

Claudia M Meyer

#### **Program Manager:**

Hung D Nguyen


#### **Principal Investigator:**

John Junkins

### **Co-Investigator:**

Dylan T Conway

# Technology Maturity (TRL)



# **Technology Areas**

#### **Primary:**

- TX17 Guidance, Navigation, and Control (GN&C)
  - □ TX17.2 Navigation
     Technologies
    - ─ TX17.2.5 Rendezvous, Proximity Operations, and Capture Sensor Processing and Processors

